Cdk8 attenuates lipogenesis by inhibiting SREBP-dependent transcription in Drosophila.
Xiao LiMeng ZhangMengmeng LiuTzu-Hao LiuRajitha-Udakara-Sampath Hemba-WadugeJun-Yuan JiPublished in: Disease models & mechanisms (2022)
Fine-tuning of lipogenic gene expression is important for the maintenance of long-term homeostasis of intracellular lipids. The SREBP family of transcription factors are master regulators that control the transcription of lipogenic and cholesterogenic genes, but the mechanisms modulating SREBP-dependent transcription are still not fully understood. We previously reported that CDK8, a subunit of the transcription co-factor Mediator complex, phosphorylates SREBP at a conserved threonine residue. Here, using Drosophila as a model system, we observed that the phosphodeficient SREBP proteins (SREBP-Thr390Ala) were more stable and more potent in stimulating the expression of lipogenic genes and promoting lipogenesis in vivo than wild-type SREBP. In addition, starvation blocked the effects of wild-type SREBP-induced lipogenic gene transcription, whereas phosphodeficient SREBP was resistant to this effect. Furthermore, our biochemical analyses identified six highly conserved amino acid residues in the N-terminus disordered region of SREBP that are required for its interactions with both Cdk8 and the MED15 subunit of the small Mediator complex. These results support that the concerted actions of Cdk8 and MED15 are essential for the tight regulation of SREBP-dependent transcription. This article has an associated First Person interview with the first author of the paper.