In triple-negative breast cancer (TNBC) that relies on catabolism of amino acid glutamine, glutaminase (GLS) converts glutamine to glutamate, which facilitates glutathione synthesis by mediating the enrichment of intracellular cystine via xCT antiporter activity. To overcome chemo resistant TNBC, we have tested a strategy of disrupting cellular redox balance by inhibition of GLS and xCT by CB839 and Erastin, respectively. Key findings of our study include: 1. Dual metabolic inhibition (CB839+Erastin) led to significant increases of cellular superoxide level in both parent and chemo resistant TNBC cells, but superoxide level was distinctly lower in resistant cells. 2. Dual metabolic inhibition combined with doxorubicin or cisplatin induced significant apoptosis in TNBC cells and is associated with high degrees of GSH depletion. In vivo , dual metabolic inhibition plus cisplatin led to significant growth delay of chemo resistant human TNBC xenografts. 3. Ferroptosis is induced by doxorubicin (DOX) but not by cisplatin or paclitaxel. Addition of dual metabolic inhibition to DOX chemotherapy significantly enhanced ferroptotic cell death. 4. Significant changes in cellular metabolites concentration preceded transcriptome changes revealed by single cell RNA sequencing, underscoring the potential of capturing early changes in metabolites as pharmacodynamic markers of metabolic inhibitors. Here we demonstrated that 4-(3-[ 18 F]fluoropropyl)-L-glutamic acid ([ 18 F]FSPG) PET detected xCT blockade by Erastin or its analog in mice bearing human TNBC xenografts. In summary, our study provides compelling evidence for the therapeutic benefit and feasibility of non-invasive monitoring of dual metabolic blockade as a translational strategy to sensitize chemo resistant TNBC to cytotoxic chemotherapy.
Keyphrases
- cell cycle arrest
- cell death
- induced apoptosis
- single cell
- photodynamic therapy
- endothelial cells
- cancer therapy
- locally advanced
- endoplasmic reticulum stress
- rna seq
- pi k akt
- gene expression
- amino acid
- ms ms
- oxidative stress
- type diabetes
- combination therapy
- adipose tissue
- metabolic syndrome
- signaling pathway
- skeletal muscle
- induced pluripotent stem cells
- pluripotent stem cells