Amino-Functionalized Porous Nanofibrous Membranes for Simultaneous Removal of Oil and Heavy-Metal Ions from Wastewater.
Yang WangBaixian WangQifei WangJiancheng DiShiding MiaoJihong YuPublished in: ACS applied materials & interfaces (2018)
Both oil spill and heavy-metal ions in the industrial wastewater cause severe problems for aquatic ecosystem and human health. In the present work, the electrospun superamphiphilic SiO2-TiO2 porous nanofibrous membranes (STPNMs) comprised of intrafiber mesopores and interfiber macropores are modified by an amino-silanization reaction, which affords the membrane (ASTPNMs) the ability to simultaneously remove the oil contaminants and the water-soluble heavy-metal ions from wastewater. The underwater superoleophobicity of ASTPNMs facilitates the highly efficient separation of water and various oils, even emulsifier-stabilized emulsion. Meanwhile, an optimal modification time (15 min, ASTPNM-15) is important for maintaining the under-oil superhydrophilicity of the membrane, based on which the oil contaminant in membrane can be easily cleaned by water alone, showing excellent self-cleaning performance. The adsorption of Pb2+ over ASTPNM-15 reaches equilibrium at around 20 min, and the monolayer adsorption capacity is 142.86 mg g-1 at pH = 5 at 20 °C. In the breakthrough processes, the permeation volume of ASTPNM-15 for the purification of Pb2+ (5 ppm, pH = 5) reaches 160 mL when the concentration of Pb2+ in the filtrate increases to 0.05 ppm. The separation efficiencies of ASTPNM-15 for simulated wastewater containing both oil spill and various heavy-metal ions (Pb2+, Cr3+, Ni2+) are larger than 99.5%. In addition, the separation capacity keeps stable over five purification-regeneration cycles without obvious decrease, proving excellent recyclability and reusability of ASTPNM-15 for practical applications.