Nowadays consumers are increasingly demanding food with fewer synthetic preservatives, which makes antimicrobial essential oils (EOs) from plants promising alternatives. In this work, surfactant-free emulsions were successfully fabricated from Cinnamon cassia oil (C. cassia oil) with partially deacetylated chitin nanofiber (ChNF) adopted as a Pickering stabilizer. The storage stability and microstructures of the emulsions with different concentrations of ChNF were studied in detail. As ChNF concentration increased, the emulsion droplet size decreased while the emulsion stability increased with stable periods as long as 90 days. This could be attributed to the Pickering stabilization realized by irreversible adsorption of the ChNF at the oil-water interface (revealed by fluorescent microscopy) and subsequent formation of an interdroplet ChNF network in the continuous phase, which was further strengthened in the presence of the aldehyde moiety in the C. cassia oil (verified by FTIR spectra). The rheological data and SEM images provided further evidence for network formation in the emulsions with increased ChNF concentration. Furthermore, the antimicrobial activity of the emulsion against Escherichia coli and the release patterns of EOs from emulsions were also investigated. The emulsions showed prolonged antibacterial activities but enhanced diffusion efficiency with the introduction of ChNF, which turned out to be a good encapsulation system for the controlled release of EOs. This work evidences the promising advantages of ChNF-stabilized Pickering emulsions as a facile EOs delivery system for application in food preservation and related fields.
Keyphrases
- escherichia coli
- fatty acid
- high throughput
- single cell
- staphylococcus aureus
- optical coherence tomography
- high resolution
- density functional theory
- highly efficient
- climate change
- big data
- electronic health record
- silver nanoparticles
- pseudomonas aeruginosa
- convolutional neural network
- high speed
- klebsiella pneumoniae
- artificial intelligence
- atomic force microscopy
- risk assessment
- solid state