Orthodontically induced external root resorption (OIERR) is a common complication of orthodontic treatments. Accurate OIERR grading is crucial for clinical intervention. This study aimed to evaluate six deep convolutional neural networks (CNNs) for performing OIERR grading on tooth slices to construct an automatic grading system for OIERR. A total of 2146 tooth slices of different OIERR grades were collected and preprocessed. Six pre-trained CNNs (EfficientNet-B1, EfficientNet-B2, EfficientNet-B3, EfficientNet-B4, EfficientNet-B5, and MobileNet-V3) were trained and validated on the pre-processed images based on four different cross-validation methods. The performances of the CNNs on a test set were evaluated and compared with those of orthodontists. The gradient-weighted class activation mapping (Grad-CAM) technique was used to explore the area of maximum impact on the model decisions in the tooth slices. The six CNN models performed remarkably well in OIERR grading, with a mean accuracy of 0.92, surpassing that of the orthodontists (mean accuracy of 0.82). EfficientNet-B4 trained with fivefold cross-validation emerged as the final OIERR grading system, with a high accuracy of 0.94. Grad-CAM revealed that the apical region had the greatest effect on the OIERR grading system. The six CNNs demonstrated excellent OIERR grading and outperformed orthodontists. The proposed OIERR grading system holds potential as a reliable diagnostic support for orthodontists in clinical practice.
Keyphrases
- convolutional neural network
- deep learning
- clinical practice
- randomized controlled trial
- high resolution
- machine learning
- magnetic resonance
- resistance training
- diabetic rats
- magnetic resonance imaging
- single cell
- oxidative stress
- risk assessment
- computed tomography
- optical coherence tomography
- body composition
- network analysis
- high intensity
- bone loss
- high density