Naa10p and IKKα interaction regulates EMT in oral squamous cell carcinoma via TGF-β1/Smad pathway.
Sai LvTing LuoYongyong YangYuqing LiJie YangJiang XuJun ZhengYan ZengPublished in: Journal of cellular and molecular medicine (2021)
Epithelial-mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N-α-acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF-β1/Smad and EMT-related molecules. The Transwell migration, invasion, qRT-PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF-β1-mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF-β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα-induced change in the migration, invasion and EMT-related molecules in OSCC cells after TGF-β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF-β1/Smad, a novel pathway for preventing OSCC.
Keyphrases