Artificial intelligence guided discovery of a barrier-protective therapy in inflammatory bowel disease.
Debashis SahooLee SwansonIbrahim M SayedGajanan D KatkarStella-Rita IbeawuchiYash MittalRama F PranadinataCourtney TindleMackenzie FullerDominik L StecJohn T ChangWilliam J SandbornSoumita DasPradipta GhoshPublished in: Nature communications (2021)
Modeling human diseases as networks simplify complex multi-cellular processes, helps understand patterns in noisy data that humans cannot find, and thereby improves precision in prediction. Using Inflammatory Bowel Disease (IBD) as an example, here we outline an unbiased AI-assisted approach for target identification and validation. A network was built in which clusters of genes are connected by directed edges that highlight asymmetric Boolean relationships. Using machine-learning, a path of continuum states was pinpointed, which most effectively predicted disease outcome. This path was enriched in gene-clusters that maintain the integrity of the gut epithelial barrier. We exploit this insight to prioritize one target, choose appropriate pre-clinical murine models for target validation and design patient-derived organoid models. Potential for treatment efficacy is confirmed in patient-derived organoids using multivariate analyses. This AI-assisted approach identifies a first-in-class gut barrier-protective agent in IBD and predicted Phase-III success of candidate agents.
Keyphrases
- artificial intelligence
- big data
- phase iii
- machine learning
- genome wide
- deep learning
- open label
- clinical trial
- endothelial cells
- ulcerative colitis
- induced pluripotent stem cells
- small molecule
- bioinformatics analysis
- genome wide identification
- dna methylation
- randomized controlled trial
- high throughput
- copy number
- electronic health record
- transcription factor
- gene expression
- mesenchymal stem cells
- human health
- solid state
- clinical evaluation