High-Throughput Raman Flow Cytometry and Beyond.
Julia Gala de PabloMatthew LindleyKotaro HiramatsuKeisuke GodaPublished in: Accounts of chemical research (2021)
Flow cytometry is a powerful tool with applications in diverse fields such as microbiology, immunology, virology, cancer biology, stem cell biology, and metabolic engineering. It rapidly counts and characterizes large heterogeneous populations of cells in suspension (e.g., blood cells, stem cells, cancer cells, and microorganisms) and dissociated solid tissues (e.g., lymph nodes, spleen, and solid tumors) with typical throughputs of 1,000-100,000 events per second (eps). By measuring cell size, cell granularity, and the expression of cell surface and intracellular molecules, it provides systematic insights into biological processes. Flow cytometers may also include cell sorting capabilities to enable subsequent additional analysis of the sorted sample (e.g., electron microscopy and DNA/RNA sequencing), cloning, and directed evolution. Unfortunately, traditional flow cytometry has several critical limitations as it mainly relies on fluorescent labeling for cellular phenotyping, which is an indirect measure of intracellular molecules and surface antigens. Furthermore, it often requires time-consuming preparation protocols and is incompatible with cell therapy. To overcome these difficulties, a different type of flow cytometry based on direct measurements of intracellular molecules by Raman spectroscopy, or "Raman flow cytometry" for short, has emerged. Raman flow cytometry obtains a chemical fingerprint of the cell in a nondestructive manner, allowing for single-cell metabolic phenotyping. However, its slow signal acquisition due to the weak light-molecule interaction of spontaneous Raman scattering prevents the throughput necessary to interrogate large cell populations in reasonable time frames, resulting in throughputs of about 1 eps. The remedy to this throughput limit lies in coherent Raman scattering methods such as stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS), which offer a significantly enhanced light-sample interaction and hence enable high-throughput Raman flow cytometry, Raman imaging flow cytometry, and even Raman image-activated cell sorting (RIACS). In this Account, we outline recent advances, technical challenges, and emerging opportunities of coherent Raman flow cytometry. First, we review the principles of various types of SRS and CARS and introduce several techniques of coherent Raman flow cytometry such as CARS, multiplex CARS, Fourier-transform CARS, SRS, SRS imaging flow cytometry, and RIACS. Next, we discuss a unique set of applications enabled by coherent Raman flow cytometry, from microbiology and lipid biology to cancer detection and cell therapy. Finally, we describe future opportunities and challenges of coherent Raman flow cytometry including increasing sensitivity and throughput, integration with droplet microfluidics, utilizing machine learning techniques, or achieving in vivo flow cytometry. This Account summarizes the growing field of high-throughput Raman flow cytometry and the bright future it can bring.
Keyphrases
- flow cytometry
- single cell
- cell therapy
- high throughput
- raman spectroscopy
- stem cells
- label free
- rna seq
- machine learning
- lymph node
- high resolution
- induced apoptosis
- gene expression
- squamous cell carcinoma
- oxidative stress
- photodynamic therapy
- fatty acid
- papillary thyroid
- cell death
- bone marrow
- endoplasmic reticulum stress
- early stage
- cell proliferation
- mouse model
- big data
- deep learning
- cell surface
- loop mediated isothermal amplification
- cell cycle arrest
- sensitive detection
- lymph node metastasis