Login / Signup

Protective Effect of Panaxynol Isolated from Panax vietnamensis against Cisplatin-Induced Renal Damage: In Vitro and In Vivo Studies.

Dahae LeeJaemin LeeKim-Long Vu HuynhThi Hong Van LeThi Hong Tuoi DoGwi Seo HwangJeong Hill ParkKi Sung KangMinh Duc NguyenNoriko Yamabe
Published in: Biomolecules (2019)
Polyacetylenic compounds isolated from Panax species are comprised of non-polar C17 compounds, exhibiting anti-inflammatory, antitumor, and antifungal activities. Panaxynol represents the major component of the essential oils of ginseng. We investigated whether panaxynol isolated from Panax vietnamensis (Vietnamese ginseng, VG) could prevent cisplatin-induced renal damage induced in vitro and in vivo. Cisplatin-induced apoptotic cell death was observed by staining with annexin V conjugated with Alexa Fluor 488, and western blotting evaluated the molecular mechanism. Panaxynol at concentrations above 0.25 μM prevented cisplatin-induced LLC-PK1 porcine renal proximal tubular cell death. LLC-PK1 cells treated with cisplatin demonstrated an increase in apoptotic cell death, whereas pretreatment with 2 and 4 μM panaxynol decreased this effect. Cisplatin demonstrated a marked increase in the phosphorylation of c-Jun N-terminal kinase (JNK), P38, and cleaved caspase-3. However, pretreatment with 2 and 4 μM panaxynol reversed the upregulated phosphorylation of JNK, P38, and the expression of cleaved caspase-3. We confirmed that the protective effect of panaxynol isolated from P. vietnamensis in LLC-PK1 cells was at least partially mediated by reducing the cisplatin-induced apoptotic damage. In the animal study, panaxynol treatment ameliorated body weight loss and blood renal function markers and downregulated the mRNA expression of inflammatory mediators.
Keyphrases