Login / Signup

A Reagent and Virus Benchmarking Panel for a Uniform Analytical Performance Assessment of N Antigen-Based Diagnostic Tests for COVID-19.

Allison GoldenJason L CanteraLorraine LillisThanh T PhanHannah SlaterEdwin J WebbRoger B PeckDavid S BoyleGonzalo J Domingo
Published in: Microbiology spectrum (2023)
Rapid diagnostic tests (RDTs) that detect antigen indicative of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can help in making quick health care decisions and regularly monitoring groups at risk of infection. With many RDT products entering the market, it is important to rapidly evaluate their relative performance. Comparison of clinical evaluation study results is challenged by protocol design variations and study populations. Laboratory assays were developed to quantify nucleocapsid (N) and spike (S) SARS-CoV-2 antigens. Quantification of the two antigens in nasal eluates confirmed higher abundance of N than S antigen. The median concentration of N antigen was 10 times greater than S per genome equivalent. The N antigen assay was used in combination with quantitative reverse transcription (RT)-PCR to qualify a panel composed of recombinant antigens, inactivated virus, and clinical specimen pools. This benchmarking panel was applied to evaluate the analytical performance of the SD Biosensor Standard Q COVID-19 antigen (Ag) test, Abbott Panbio COVID-19 Ag rapid test, Abbott BinaxNOW COVID-19 Ag test, and the LumiraDx SARS-CoV-2 Ag test. The four tests displayed different sensitivities toward the different panel members, but all performed best with the clinical specimen pool. The concentration for a 90% probability of detection across the four tests ranged from 21 to 102 pg/mL of N antigen in the extracted sample. Benchmarking panels provide a quick way to verify the baseline performance of a diagnostic and enable direct comparisons between diagnostic tests. IMPORTANCE This study reports the results for severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) nucleocapsid (N) and spike (S) antigen quantification assays and their performance against clinical reverse transcription (RT)-PCR results, thus describing an open-access quantification method for two important SARS-CoV-2 protein analytes. Characterized N antigen panels were used to evaluate the limits of detection of four different rapid tests for SARS-CoV-2 against multiple sources of nucleocapsid antigen, demonstrating proof-of-concept materials and methodology to evaluate SARS-CoV-2 rapid antigen detection tests. Quantification of N antigen was used to characterize the relationship between viral count and antigen concentration among clinical samples and panel members of both clinical sample and viral culture origin. This contributes to a deeper understanding of protein antigen and molecular analytes and presents analytical methods complementary to clinical evaluation for characterizing the performance of both laboratory-based and point-of-care rapid diagnostics for SARS-CoV-2.
Keyphrases