Login / Signup

Ultrasensitive "FRET-SEF" Probe for Sensing and Imaging MicroRNAs in Living Cells Based on Gold Nanoconjugates.

Jiadi SunFuwei PiJian JiHong-Tao LeiZhixian GaoYinzhi ZhangJean de Dieu HabimanaZaijun LiXiulan Sun
Published in: Analytical chemistry (2018)
MicroRNAs (miRNAs), a kind of single-stranded small RNA molecule, play significant roles in the physiological and pathological processes of human beings. Currently, miRNAs have been demonstrated as important biomarkers critically related to many diseases and life nature, including several cancers and cell senescence. It is valuable to establish sensitive assays for monitoring the levels of intracellular up-regulated/down-regulated miRNA expression, which would contribute to the early prediction of the tumor risk and cardiovascular disease. Here, an oriented gold nanocross (AuNC)-decorated gold nanorod (AuNR) probe with "OFF-enhanced ON" fluorescence switching was developed based on fluorescence resonance energy transfer and surface enhanced fluorescence (FRET-SEF) principle. The nanoprobe was used to specifically detect miRNA in vitro, which gave two linear responses represented by the equation F = 1830.32 log C + 6349.27, R2 = 0.9901, and F = 244.41 log C + 1916.10, R2 = 0.9984, respectively, along with a detection limit of 0.5 aM and 0.03 fM, respectively. Furthermore, our nanoprobe was used to dynamically monitor the expression of intracellular up-regulated miRNA-34a from the HepG2 and H9C2 cells stimulated by AFB1 and TGF-β1, and the experimental results showed that the new probe not only could be used to quantitively evaluate miRNA oncogene in vitro, but also enabled tracking and imaging of miRNAs in living cells.
Keyphrases