Merged Targeted Quantification and Untargeted Profiling for Comprehensive Assessment of Acylcarnitine and Amino Acid Metabolism.
Tony TeavHéctor Gallart-AyalaVera van der VelpenFlorence MehlHugues HenryJulijana IvanisevicPublished in: Analytical chemistry (2019)
Acylcarnitines and amino acids are key players in energy metabolism; however, analytical methods for comprehensive and straightforward quantitative profiling of these metabolites, without derivatization or use of ion-pairing agents, are lacking. We therefore developed a hydrophilic interaction chromatography (HILIC)-based high-resolution mass spectrometry (HRMS) method for the simultaneous quantification of acylcarnitines and amino acids in a single run, while taking advantage of HRMS data acquired in full-scan mode to screen for additional derivatives and other polar metabolites. A single-step metabolite extraction with internal standard mixture (in methanol) warranted high-throughput sample preparation whose applicability was demonstrated on a panel of human biofluids (i.e., blood plasma, CSF, and urine) and brain tissue. Method accuracy was within 90-106% of validated NIST reference plasma concentrations for the panel of measured amino acids. Amino acid and acylcarnitine extraction recoveries were 87-100% on average, depending on the concentration range spiked. The coefficient of variation (CV) was 1-10% and 1-25% for intra- and interday measurements, respectively, with the highest CVs for the metabolites at the limit of quantification, depending on the biofluid. Acylcarnitine and amino acid signatures or chemical composition barcodes of the different biofluids and human brain tissue were acquired and biofluid- and tissue-associated differences were discussed in the context of their respective physiological roles. Significant differences were observed in the amino acid profiles, whereas acylcarnitine composition did not show biofluid-characteristic or brain region-specific pattern. The retrospective exploration of full-scan all-ion-fragmentation data allowed us to extract the information on unsaturated and hydroxylated acylcarnitine species, amines, and purine and pyrimidine metabolites. This merged targeted and untargeted approach provides an innovative strategy for simultaneous and comprehensive assessment of acylcarnitine and amino acid metabolism in clinical research studies using relevant biofluids and tissue extracts.
Keyphrases
- amino acid
- high resolution mass spectrometry
- liquid chromatography
- mass spectrometry
- ms ms
- ultra high performance liquid chromatography
- tandem mass spectrometry
- high throughput
- gas chromatography
- simultaneous determination
- computed tomography
- single cell
- endothelial cells
- solid phase extraction
- cancer therapy
- multiple sclerosis
- gene expression
- gas chromatography mass spectrometry
- high performance liquid chromatography
- cross sectional
- machine learning
- data analysis
- contrast enhanced
- cerebral ischemia
- high speed
- magnetic resonance
- drug delivery
- subarachnoid hemorrhage
- blood brain barrier
- cerebrospinal fluid
- social media
- induced pluripotent stem cells
- dual energy
- diffusion weighted imaging