The Rpfor gene modulates the locomotory activity and host-seeking behaviour of Rhodnius prolixus.
Newmar P MarliéreMarcelo G LorenzoAlessandra Aparecida GuarneriPublished in: Insect molecular biology (2024)
The molecular bases of animal behaviour are intricate due to the pleiotropic nature of behaviour-modulating genes, which are often expressed across multiple tissues. The foraging gene (for) encodes a cGMP-dependent protein kinase (PKG), pivotal in regulating downstream target proteins through phosphorylation. In insects, for has been implicated in various behavioural contexts and physiological processes regarding searching for food. Rhodnius prolixus, a hematophagous bug that transmits Trypanosoma cruzi, the causative agent of Chagas disease, exhibits specific activity patterns associated with its hematophagous behaviour. Our previous work demonstrated a correlation between locomotor activity profiles and the expression of Rpfor, suggesting its involvement in modulating triatomine locomotion. In this study, we investigated the impact of Rpfor knockdown on locomotory activity, host-seeking behaviour, feeding performance and lipid metabolism in R. prolixus nymphs. Using RNA interference, we achieved a significant reduction of Rpfor expression in both the brain and fat body of R. prolixus nymphs. Knocked-down nymphs exhibited diminished non-oriented locomotory activity compared with controls, without altering the characteristic bimodal pattern of activity. Additionally, they displayed an increased tendency to approach a host, suggesting a role for Rpfor in modulating host-seeking behaviour. Feeding performance and lipid metabolism remained unaffected by Rpfor knockdown. Our findings underscore the multifaceted role of Rpfor in modulating locomotor activity and host-seeking behaviour in R. prolixus nymphs, shedding light on the molecular mechanisms underlying their hematophagous behaviour and potential implications for disease transmission. Further research is necessary to elucidate the intricate interplay between Rpfor expression, behaviour and physiological processes in triatomine bugs.