CATION-CHLORIDE CO-TRANSPORTER 1 (CCC1) Mediates Plant Resistance against Pseudomonas syringae.
Baoda HanYunhe JiangGuoxin CuiJianing MiM Rob G RoelfsemaGrégory MouilleJulien SechetSalim Al-BabiliManuel ArandaHeribert HirtPublished in: Plant physiology (2019)
Plasma membrane (PM) depolarization functions as an initial step in plant defense signaling pathways. However, only a few ion channels/transporters have been characterized in the context of plant immunity. Here, we show that the Arabidopsis (Arabidopsis thaliana) Na+:K+:2Cl- (NKCC) cotransporter CCC1 has a dual function in plant immunity. CCC1 functions independently of PM depolarization and negatively regulates pathogen-associated molecular pattern-triggered immunity. However, CCC1 positively regulates plant basal and effector-triggered resistance to Pseudomonas syringae pv. tomato (Pst) DC3000. In line with the compromised immunity to Pst DC3000, ccc1 mutants show reduced expression of genes encoding enzymes involved in the biosynthesis of antimicrobial peptides, camalexin, and 4-OH-ICN, as well as pathogenesis-related proteins. Moreover, genes involved in cell wall and cuticle biosynthesis are constitutively down-regulated in ccc1 mutants, and the cell walls of these mutants exhibit major changes in monosaccharide composition. The role of CCC1 ion transporter activity in the regulation of plant immunity is corroborated by experiments using the specific NKCC inhibitor bumetanide. These results reveal a function for ion transporters in immunity-related cell wall fortification and antimicrobial biosynthesis.
Keyphrases
- cell wall
- dendritic cells
- arabidopsis thaliana
- signaling pathway
- air pollution
- genome wide
- transcription factor
- particulate matter
- poor prognosis
- gene expression
- staphylococcus aureus
- cell therapy
- stem cells
- ionic liquid
- risk assessment
- epithelial mesenchymal transition
- pi k akt
- immune response
- candida albicans
- pseudomonas aeruginosa
- plant growth
- binding protein
- drug induced
- induced apoptosis