Parental care is regulated by multiple endocrine mechanisms. Among these hormones, prolactin (PRL) is involved in the expression of parental behaviors. Despite the consensus that PRL mediates variation in parental effort with age and body condition, its role in the adjustment of parental effort to fluctuating environmental conditions, including changing predation pressure, still awaits further investigation. To shed light on this knowledge gap, we relied on a long-term monitoring of female common eiders Somateria mollissima (n = 1277 breeding attempts, 2012-2022) incubating under fluctuating predation risk to investigate the link between baseline PRL levels and female minimum age, body condition, clutch size, environmental parameters (predation pressure, climate, nest microhabitat) and hatching success. We predicted that PRL would be higher in older females, those in better condition or incubating larger clutches. We also predicted that females would reduce parental effort when nesting under challenging environmental conditions (high predation pressure or poor climatic conditions), translated into reduced baseline PRL levels. We also explored how variation in PRL levels, female characteristics and environmental parameters were related to hatching success. Following our predictions, PRL levels were positively associated with body condition and female age (before showing a senescent decline in the oldest breeders). However, we did not observe any population-level or individual-level reduction in PRL levels in response to increasing predation pressure. Population-level baseline PRL levels instead increased over the study period, coincident with rising predation threat, but also increasing female body condition and age. While we did not provide evidence for a direct association between baseline PRL levels and predation risk, our results support the idea that elevated baseline PRL levels promote hatching success under internal constraints (in young, inexperienced, breeders or those incubating a large clutch) or constraining environmental conditions (during years of high predation pressure or poor climatic and foraging conditions). Finally, the low repeatability of baseline PRL levels and high interannual variability highlight considerable within-individual flexibility in baseline PRL levels. Further research should explore flexibility in parental effort to changing environmental conditions, focusing on both baseline and stress-induced PRL levels.