Login / Signup

Efficient data labeling strategies for automated muscle segmentation in lower leg MRIs of Charcot-Marie-Tooth disease patients.

Seung-Ah LeeHyun Su KimEhwa YangYoung Cheol YoonJi Hyun LeeByung-Ok ChoiJae-Hun Kim
Published in: PloS one (2024)
We aimed to develop efficient data labeling strategies for ground truth segmentation in lower-leg magnetic resonance imaging (MRI) of patients with Charcot-Marie-Tooth disease (CMT) and to develop an automated muscle segmentation model using different labeling approaches. The impact of using unlabeled data on model performance was further examined. Using axial T1-weighted MRIs of 120 patients with CMT (60 each with mild and severe intramuscular fat infiltration), we compared the performance of segmentation models obtained using several different labeling strategies. The effect of leveraging unlabeled data on segmentation performance was evaluated by comparing the performances of few-supervised, semi-supervised (mean teacher model), and fully-supervised learning models. We employed a 2D U-Net architecture and assessed its performance by comparing the average Dice coefficients (ADC) using paired t-tests with Bonferroni correction. Among few-supervised models utilizing 10% labeled data, labeling three slices (the uppermost, central, and lowermost slices) per subject exhibited a significantly higher ADC (90.84±3.46%) compared with other strategies using a single image slice per subject (uppermost, 87.79±4.41%; central, 89.42±4.07%; lowermost, 89.29±4.71%, p < 0.0001) or all slices per subject (85.97±9.82%, p < 0.0001). Moreover, semi-supervised learning significantly enhanced the segmentation performance. The semi-supervised model using the three-slices strategy showed the highest segmentation performance (91.03±3.67%) among 10% labeled set models. Fully-supervised model showed an ADC of 91.39±3.76. A three-slice-based labeling strategy for ground truth segmentation is the most efficient method for developing automated muscle segmentation models of CMT lower leg MRI. Additionally, semi-supervised learning with unlabeled data significantly enhances segmentation performance.
Keyphrases