Developmental changes in gene expression and enzyme activities of anabolic and catabolic enzymes for storage carbohydrates in the honeybee, Apis mellifera.
Elzbieta Lopienska-BiernatK ŻółtowskaE A ZaobidnaM DmitryjukB BąkPublished in: Insectes sociaux (2018)
Glycogen and trehalose are important sources of energy in insects. The expression of genes encoding the key metabolic enzymes-glycogen synthase (GS), glycogen phosphorylase (GP), trehalose-6-phosphate synthase (TPS-1), soluble trehalase (Tre-1) and membrane-bound trehalase (Tre-2)-was analyzed in 12 developmental stages of Apis mellifera worker brood. The content of GS and GP proteins, TPS activity, total trehalase activity, and the activity of Tre-1 and Tre-2 were determined. Transcript quantity was not always correlated with the content of the encoded GS or GP protein. The correlation was higher for GS (r = 0.797) than GP (r = 0.651). The expression of the glycogen synthase gene (gs) and the glycogen phosphorylase gene (gp) was high in 4- and 7-day-old larvae and in pupae, excluding the last pupal stage. The expression of the tps-1 gene was highest in the mid-pupal stage and contributed to higher enzyme activity in that stage. The expression of the tre-1 gene was higher than the expression of the tre-2 gene throughout development. In newly hatched workers, the expression of genes encoding catabolic enzymes of both carbohydrates, gp and tre-1, was higher than the expression of genes encoding anabolic enzymes. The results of this study suggest that sugar metabolism genes have somewhat different control mechanisms during larval development and metamorphosis.