The Promise and Potential of Brain Organoids.
Lena SmirnovaThomas HartungPublished in: Advanced healthcare materials (2024)
Brain organoids are 3D in vitro culture systems derived from human pluripotent stem cells that self-organize to model features of the (developing) human brain. This review examines the techniques behind organoid generation, their current and potential applications, and future directions for the field. Brain organoids possess complex architecture containing various neural cell types, synapses, and myelination. They have been utilized for toxicology testing, disease modeling, infection studies, personalized medicine, and gene-environment interaction studies. An emerging concept termed Organoid Intelligence (OI) combines organoids with artificial intelligence systems to generate learning and memory, with the goals of modeling cognition and enabling biological computing applications. Brain organoids allow neuroscience studies not previously achievable with traditional techniques, and have the potential to transform disease modeling, drug development, and the understanding of human brain development and disorders. The aspirational vision of OI parallels the origins of artificial intelligence, and efforts are underway to map a roadmap toward its realization. In summary, brain organoids constitute a disruptive technology that is rapidly advancing and gaining traction across multiple disciplines.
Keyphrases
- artificial intelligence
- white matter
- resting state
- big data
- induced pluripotent stem cells
- machine learning
- deep learning
- pluripotent stem cells
- functional connectivity
- cerebral ischemia
- endothelial cells
- gene expression
- case control
- single cell
- mesenchymal stem cells
- genome wide
- mild cognitive impairment
- risk assessment
- transcription factor