Login / Signup

Novel nano-vehicle for delivery and efficiency of anticancer auraptene against colon cancer cells.

Nazila JalilzadehNaser SamadiRoya SalehiGholamreza DehghanMehrdad IranshahiMohammad Reza DadpourHamed Hamishehkar
Published in: Scientific reports (2020)
The aim of this study is to devise, prepare and characterize nano encapsulated auraptene (AUR) and evaluate cytotoxic and apoptotic effects on HT-29 colon cancer cells. Herein, AUR nano formulations were prepared by triblock (PCL-PEG-PCL) and pentablock (PLA-PCL-PEG-PCL-PLA) biodegradable copolymers in order to increase AUR bioavailability as an anticancer agent. The preparation of nano particles (NPs) was done with rotor stator homogenization (RSH) and Ultrasonic homogenization (USH) methods. The physicochemical characteristics of prepared nanoparticles (NPs) were studied using HNMR, FTIR, GPC, DLS and SEM techniques. The smaller hydrodynamic size (110 nm) and polydispersity index (PDI: 0.288) as well as higher cellular uptake (89%) were observed in PB NPs rather than TB NPs. The highest cytotoxic and apoptotic effects were observed in AUR loaded PB NPs compared to AUR loaded TB NPs and free AUR obtained by MTT assay, cell cycle arrest, Annexin V-FITC, DAPI staining and RT-PCR techniques. Real time PCR results indicated that Bax /Bcl2 expression ratio as an apoptosis predicting criterion, in free AUR, AUR loaded TB and AUR loaded PB have increased 6, 9 and 13 times, respectively (p value < 0.05). In conclusion, using biodegradable nano-vehicles for sustained delivery of natural anti-cancer compounds may open new perspectives for treatment of cancer patients.
Keyphrases