Small Molecule CD38 Inhibitors: Synthesis of 8-Amino-N1-inosine 5'-monophosphate, Analogues and Early Structure-Activity Relationship.
Joanna M WattRichard GraeffBarry V L PotterPublished in: Molecules (Basel, Switzerland) (2021)
Although a monoclonal antibody targeting the multifunctional ectoenzyme CD38 is an FDA-approved drug, few small molecule inhibitors exist for this enzyme that catalyzes inter alia the formation and metabolism of the N1-ribosylated, Ca2+-mobilizing, second messenger cyclic adenosine 5'-diphosphoribose (cADPR). N1-Inosine 5'-monophosphate (N1-IMP) is a fragment directly related to cADPR. 8-Substituted-N1-IMP derivatives, prepared by degradation of cyclic parent compounds, inhibit CD38-mediated cADPR hydrolysis more efficiently than related cyclic analogues, making them attractive for inhibitor development. We report a total synthesis of the N1-IMP scaffold from adenine and a small initial compound series that facilitated early delineation of structure-activity parameters, with analogues evaluated for inhibition of CD38-mediated hydrolysis of cADPR. The 5'-phosphate group proved essential for useful activity, but substitution of this group by a sulfonamide bioisostere was not fruitful. 8-NH2-N1-IMP is the most potent inhibitor (IC50 = 7.6 μM) and importantly HPLC studies showed this ligand to be cleaved at high CD38 concentrations, confirming its access to the CD38 catalytic machinery and demonstrating the potential of our fragment approach.