Diagnostic Performance of a Contrast-Enhanced Ultra-Low-Dose High-Pitch CT Protocol with Reduced Scan Range for Detection of Pulmonary Embolisms.
Andreas Stefan BrendlinMoritz T WinkelmannFelix PeisenChristoph P ArtznerKonstantin NikolaouAhmed E OthmanSaif AfatPublished in: Diagnostics (Basel, Switzerland) (2021)
(1) Background: To evaluate the diagnostic performance of a simulated ultra-low-dose (ULD), high-pitch computed tomography pulmonary angiography (CTPA) protocol with low tube current (mAs) and reduced scan range for detection of pulmonary embolisms (PE). (2) Methods: We retrospectively included 130 consecutive patients (64 ± 16 years, 69 female) who underwent clinically indicated high-pitch CTPA examination for suspected acute PE on a 3rd generation dual-source CT scanner (SOMATOM FORCE, Siemens Healthineers, Forchheim, Germany). ULD datasets with a realistic simulation of 25% mAs, reduced scan range (aortic arch-basal pericardium), and Advanced Modeled Iterative Reconstruction (ADMIRE®, Siemens Healthineers, Forchheim, Germany) strength 5 were created. The effective radiation dose (ED) of both datasets (standard and ULD) was estimated using a dedicated dosimetry software solution. Subjective image quality and diagnostic confidence were evaluated independently by three reviewers using a 5-point Likert scale. Objective image quality was compared using noise measurements. For assessment of diagnostic accuracy, patients and pulmonary vessels were reviewed binarily for affection by PE, using standard CTPA protocol datasets as the reference standard. Percentual affection of pulmonary vessels by PE was computed for disease severity (modified Qanadli score). (3) Results: Mean ED in ULD protocol was 0.7 ± 0.3 mSv (16% of standard protocol: 4.3 ± 1.7 mSv, p < 0.001, r > 0.5). Comparing ULD to standard protocol, subjective image quality and diagnostic confidence were comparably good (p = 0.486, r > 0.5) and image noise was significantly lower in ULD (p < 0.001, r > 0.5). A total of 42 patients (32.2%) were affected by PE. ULD protocol had a segment-based false-negative rate of only 0.1%. Sensitivity for detection of any PE was 98.9% (95% CI, 97.2-99.7%), specificity was 100% (95% CI, 99.8-100%), and overall accuracy was 99.9% (95% CI, 98.6-100%). Diagnoses correlated strongly between ULD and standard protocol (Chi-square (1) = 42, p < 0.001) with a decrease in disease severity of only 0.48% (T = 1.667, p = 0.103). (4) Conclusions: Compared to a standard CTPA protocol, the proposed ULD protocol proved reliable in detecting and ruling out acute PE with good levels of image quality and diagnostic confidence, as well as significantly lower image noise, at 0.7 ± 0.3 mSv (84% dose reduction).
Keyphrases
- image quality
- computed tomography
- dual energy
- randomized controlled trial
- contrast enhanced
- positron emission tomography
- low dose
- end stage renal disease
- pulmonary hypertension
- magnetic resonance imaging
- newly diagnosed
- chronic kidney disease
- ejection fraction
- emergency department
- machine learning
- prognostic factors
- diffusion weighted imaging
- patient reported outcomes
- high dose
- deep learning
- liver failure
- magnetic resonance
- mass spectrometry
- hepatitis b virus
- pulmonary embolism
- rna seq
- real time pcr
- single cell