Login / Signup

Unraveling molecular mechanistic disparities in pathogenic visceral Leishmania resistance between reptiles and mammals through comparative transcriptomic analyses.

Xiaoting ZhengJinlei HeXianguang GuoYuying XiaoXuechun LiaoZheying ZhuDali Chen
Published in: Acta tropica (2024)
Leishmaniasis is one of the most important neglected tropical parasitic diseases, manifesting various clinical forms depending on the parasite species and the genetic background of the host. In order to elucidate the underlying mechanisms of reptilian defense against pathogenic Leishmania species and to delineate the global gene expression profile alterations during host-pathogen interaction, we established experimental animal and cell models using both heterothermic lizards (Phrynocephalus przewalskii) and homothermic mammals (BALB/c mice) infected with pathogenic Leishmania infantum (high virulence HCZ strain) and Leishmania donovani (low virulence 801 strain). Overall, the lizards didn't show any obvious clinical symptoms or immune responses in vivo. Using RNA-seq methodology, differentially expressed genes identified in the HCZ and 801-comparison groups of P. przewalskii were primarily associated with arginine biosynthesis, the MAPK signaling pathway and the PI3K-Akt signaling pathway. In contrast, higher parasite loads, exacerbated hepatic inflammatory lesions and enhanced immune responses were observed in BALB/c mice, with DEGs predominantly associated with immunological diseases, innate and adaptive immune responses. By integrating transcriptional data from reptile and mammalian hosts, we elucidated the pivotal role of amino acid metabolism and lipid metabolism in parasite control. In contrast to findings from animal experiments, Leishmania parasites effectively infected peritoneal macrophages of lizards in vitro, demonstrating a high infection rate. Furthermore, we used RT-qPCR to detect changes in cytokine expression in macrophages and found that Th1-type cytokines were significantly upregulated in lizards, facilitating the clearance of the HCZ strain 24 hours post-infection. Conversely, cytokine expression was generally suppressed in BALB/c mice, allowing immune evasion by the parasites.
Keyphrases