Login / Signup

Triclocarban exposure aggravates dextran sulfate sodium-induced colitis by deteriorating the gut barrier function and microbial community in mice.

Mengyu QinHehua LeiYuchen SongMengjing WuChuan ChenZheng CaoCui ZhangRuichen DuCe ZhangXian WangLimin Zhang
Published in: Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association (2023)
Triclocarban (TCC) is an antibacterial component widely used in personal care products with potential toxicity possessing public health issues. Unfortunately, enterotoxicity mechanisms of TCC exposure remain largely unknown. Using a combination of 16S rRNA gene sequencing, metabolomics, histopathological and biological examinations, this study systematically explored the deteriorating effects of TCC exposure on a dextran sulfate sodium (DSS)-induced colitis mouse model. We found that TCC exposure at different doses significantly aggravated colitis phenotypes including shortened colon length and altered colonic histopathology. Mechanically, TCC exposure further disrupted intestinal barrier function, manifested by significant downregulation of the number of goblet cells, mucus layer thickness and expression of junction proteins (MUC-2, ZO-1, E-cadherin and Occludin). The gut microbiota composition and its metabolites such as short-chain fatty acids (SCFAs) and tryptophan metabolites were also markedly altered in DSS-induced colitis mice. Consequently, TCC exposure markedly exacerbated colonic inflammatory status of DSS-treated mice by activating NF-κB pathway. These findings provided new evidence that TCC could be an environmental hazards for development of IBD or even colon cancer.
Keyphrases