Login / Signup

Formation, Identification, and Occurrence of the Furan-Containing β-Carboline Flazin Derived from l-Tryptophan and Carbohydrates.

Tomás HerraizAntonio Salgado
Published in: Journal of agricultural and food chemistry (2024)
β-Carbolines (βCs) are bioactive indole alkaloids found in foods and in vivo. This work describes the identification, formation, and occurrence in foods of the βC with a furan moiety flazin (1-[5-(hydroxymethyl)furan-2-yl]-9 H -pyrido[3,4- b ]indole-3-carboxylic acid). Flazin was formed by the reaction of l-tryptophan with 3-deoxyglucosone but not with 5-hydroxymethylfurfural. Its formation was favored in acidic conditions and heating (70-110 °C). The proposed mechanism of formation occurs through the formation of intermediates 3,4-dihydro-β-carboline-3-carboxylic acid (imines), followed by the oxidation to C═O in the carbohydrate chain and aromatization to βC ring with subsequent dehydration steps and cyclization to afford the furan moiety. Flazin is generated in the reactions of tryptophan with carbohydrates. Its formation from fructose was higher than from glucose, whereas sucrose gave flazin under acidic conditions and heating owing to hydrolysis. Flazin was identified in foods by HPLC-MS, and its content was determined by HPLC-fluorescence. It occurred in numerous processed foods, such as tomato products, including crushed tomato puree, fried tomato, ketchup, tomato juices, and jams, but also in soy sauce, beer, balsamic vinegar, fruit juices, dried fruits, fried onions, and honey. Their concentrations ranged from not detected to 22.3 μg/mL, with the highest mean levels found in tomato concentrate (13.9 μg/g) and soy sauce (9.4 μg/mL). Flazin was formed during the heating process, as shown in fresh tomato juice and crushed tomatoes. These results indicate that flazin is widely present in foods and is daily uptaken in the diet.
Keyphrases
  • ms ms
  • mass spectrometry
  • risk assessment
  • physical activity
  • simultaneous determination
  • blood pressure
  • nitric oxide
  • skeletal muscle
  • solid phase extraction
  • blood glucose