Login / Signup

High-frequency mutation and recombination are responsible for the emergence of novel porcine reproductive and respiratory syndrome virus in northwest China.

Xun ZhangYan LiShengzhong XiaoXia YangXinkai ChenPeng WuJiawei SongZhenguo MaZhuoxuan CaiMengmeng JiangYanhong ZhangYan YangZhe ZhangZiheng ZhouJinliang ShengHeng Wang
Published in: Archives of virology (2019)
Porcine reproductive and respiratory syndrome (PRRS) is one of the most highly infectious diseases in the pig industry, resulting in enormous economic losses worldwide. In this study, a PRRS virus (PRRSV) strain was isolated from primary porcine alveolar macrophage cells in Xinjiang in northwest China. This new strain was sequenced and designated as XJzx1-2015, and its sequence was then compared to those of other representative PRRSV strains from around the world. Complete genomic characterisation showed that the full-length nucleotide sequence of XJzx1-2015 exhibited low-level similarity to NB/04 (91.6%), JXA1 (90.5%), CH-1a (90.2%), VR-2332 (86.9%), QYYZ (85.7%), and JL580 (82.2%), with the highest similarity to HK13 (91.7%) sequence identity. Nonstructural protein 2 (NSP2) and glycosylated protein (GP) 2 of XJzx1-2015 had deletions of five and two amino acids, respectively, corresponding to strain VR-2332 positions 475-479 and 173-174. Phylogenetic analysis based on complete genome sequences showed that XJzx1-2015 and four other strains from China formed a new subgenotype closely related to other sublineage 8.7 (JXA1-like) strains belonging to the North American genotype. However, phylogenetic analysis based on NSP2 and GP5 showed that XJzx1-2015 clustered with sublineage 8.7 (JXA1-like, CH-1a-like) and lineage 3 (QYYZ-like) strains, respectively. Recombination analysis indicated that XJzx1-2015 is an intersubgenotype recombinant of CH-1a-like and QYYZ-like strains. Overall, our findings demonstrate that XJzx1-2015 is a novel PRRSV strain with a significantly high frequency of mutation and a recombinant between lineage 3 and sublineage 8.7 identified in northwest China. These results provide important insights into PRRSV evolution.
Keyphrases