Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases.
Wei ZhengDejian ZhaoHui ZhangPrameladevi ChinnasamyNicholas SibingaJeffery W PollardPublished in: Wellcome open research (2021)
Background: Metastatic breast cancer cells recruit macrophages (metastasis-associated macrophages, or MAMs) to facilitate their seeding, survival and outgrowth. However, a comprehensive understanding of the gene expression program in MAMs and how this program contributes to metastasis remain elusive. Methods: We compared the transcriptomes of MAMs recruited to lung metastases and resident alveolar macrophages (RAMs) and identified a large variety of differentially expressed genes and their associated signaling pathways. Some of the changes were validated using qRT-PCR and immunofluorescence. To probe the functional relevance to metastatic growth, a gene-targeting mouse model of female mice in the C57BL6/J background was used to study allograft inflammatory factor 1 (AIF1, also known as ionized calcium-binding adapter molecule 1 or IBA1). Results: Interferon signaling is one of the most activated pathways in MAMs, with strong upregulation of multiple components of the pathway and a significant enrichment for the gene signatures of interferon-alpha-treated human macrophages. Aif1, an interferon-responsive gene that regulates multiple macrophage activities, was robustly induced in MAMs. Aif1 deficiency in MAMs, however, did not affect development of lung metastases, suggesting that AIF1 indicates MAM activation but is dispensable for regulating metastasis. Conclusions: The drastically different gene expression profile of MAMs as compared to RAMs suggests an important role in promoting metastatic growth. Dissection of the underlying mechanisms and functional validation of potential targets in the profile may provide novel therapeutic strategies for the treatment of metastatic diseases.
Keyphrases
- genome wide
- mouse model
- genome wide identification
- gene expression
- copy number
- squamous cell carcinoma
- small cell lung cancer
- dendritic cells
- dna methylation
- quality improvement
- signaling pathway
- metastatic breast cancer
- endothelial cells
- induced apoptosis
- oxidative stress
- transcription factor
- patient safety
- type diabetes
- risk assessment
- young adults
- drug induced
- climate change
- cell cycle arrest
- living cells
- insulin resistance
- newly diagnosed
- pluripotent stem cells
- stress induced