The Potential Role of a Surface-Modified Additive-Manufactured Healing Abutment on the Expression of Integrins α2, β1, αv, and β6 in the Peri-Implant Mucosa: A Preliminary Human Study.
Leandro Amadeu RothMarta Ferreira BastosMarcelo A MeloValentim Adelino Ricardo BarãoRaphael C CostaGabriela GiroJoão Gabriel Silva SouzaKinga Grzech-LeśniakJamil Awad ShibliPublished in: Life (Basel, Switzerland) (2022)
The stability of peri-implant soft tissues is essential for long-term success. Integrins play a vital role in biological processes through developing and maintaining cell interactions; however, few studies have evaluated the effects of modifications to abutment surfaces on cell adhesion across integrin expression. Therefore, this pilot study assessed the influence of different surface topographies of titanium healing abutments prepared by additive manufacturing (AM) on the gene expression levels of the integrin subunits α2, β1, αv, and β6 in the human peri-implant mucosa. Thirteen healthy adults were included. Depending on the number of required implants, the subjects were distributed in different groups as a function of healing abutment topography: group 1 (fully rough surface); group 2 (upper machined + lower rough); group 3 (rough upper surface + lower machined); group 4 (fully machined). A total of 40 samples ( n = 10/group) of the peri-implant mucosa around the abutments were collected 30 days after implant placement, and subsequently, the gene expression levels were evaluated using real-time PCR. The levels of gene expression of β1-subunit integrin were upregulated for individuals receiving fully rough surface abutments compared with the other surface topographies ( p < 0.05). However, the healing abutment topography did not affect the gene expression levels of the α2, αv, and β6 integrin subunits in the human peri-implant mucosa ( p > 0.05). This preliminary study suggested that controlled modifications of the surface topography of titanium healing abutments produced by AM may influence the quality of the peri-implant mucosa in the early stages of the soft tissue healing process.