The Effect of Different Exercise Modalities on Sertoli-germ Cells Metabolic Interactions in High-fat Diet-induced Obesity Rat Models: Implication on Glucose and Lactate Transport, Igf1, and Igf1R-dependent Pathways.
Aref Habibi MalekiJavad Tolouei AzarMazdak RaziAsghar TofighiPublished in: Reproductive sciences (Thousand Oaks, Calif.) (2024)
The study aimed to uncover a unique aspect of obesity-related metabolic disorders in the testicles induced by a high-fat diet (HFD) and explored the potential mitigating effects of exercise modalities on male fertility. Thirty mature male Wistar rats were randomly assigned to control, HFD-sole, moderate-intensity exercise with HFD (HFD+MICT), high-intensity continuous exercise with HFD (HFD+HICT), and high-intensity interval exercise with HFD (HFD+HIIT) groups (n=6/group). Intracytoplasmic carbohydrate (ICC) storage, expression levels of GLUT-1, GLUT-3, MCT-4, Igf1, and Igf1R, and testicular lactate and lactate dehydrogenase (LDH) levels were assessed. ICC storage significantly decreased in HFD-sole rats, along with decreased mRNA and protein levels of GLUT-1, GLUT-3, MCT-4, Igf1, and Igf1R. The HFD-sole group exhibited a notable reduction in testicular lactate and LDH levels (p<0.05). Conversely, exercise, particularly HIIT, upregulated ICC storage, expression levels of GLUT-1, GLUT-3, MCT-4, Igf1, and Igf1R, and enhanced testicular lactate and LDH levels. These results confirm that exercise, especially HIIT, has the potential to mitigate the adverse effects of HFD-induced obesity on testicular metabolism and male fertility. The upregulation of metabolite transporters, LDH, lactate levels, Igf1, and Igf1R expression may contribute to maintaining metabolic interactions and improving the glucose/lactate conversion process. These findings underscore the potential benefits of exercise in preventing and managing obesity-related male fertility issues.
Keyphrases
- high intensity
- high fat diet
- insulin resistance
- binding protein
- high fat diet induced
- adipose tissue
- resistance training
- metabolic syndrome
- pi k akt
- skeletal muscle
- type diabetes
- growth hormone
- poor prognosis
- weight loss
- weight gain
- physical activity
- cell proliferation
- oxidative stress
- germ cell
- signaling pathway
- cell cycle arrest
- emergency department
- amino acid
- blood pressure
- endothelial cells
- endoplasmic reticulum stress
- young adults
- high glucose
- body composition
- stress induced
- long non coding rna