Login / Signup

Interaction between decision-making and motor learning when selecting reach targets in the presence of bias and noise.

Tianyao ZhuJason P GallivanDaniel M WolpertJ Randall Flanagan
Published in: PLoS computational biology (2023)
Motor errors can have both bias and noise components. Bias can be compensated for by adaptation and, in tasks in which the magnitude of noise varies across the environment, noise can be reduced by identifying and then acting in less noisy regions of the environment. Here we examine how these two processes interact when participants reach under a combination of an externally imposed visuomotor bias and noise. In a center-out reaching task, participants experienced noise (zero-mean random visuomotor rotations) that was target-direction dependent with a standard deviation that increased linearly from a least-noisy direction. They also experienced a constant bias, a visuomotor rotation that varied (across groups) from 0 to 40 degrees. Critically, on each trial, participants could select one of three targets to reach to, thereby allowing them to potentially select targets close to the least-noisy direction. The group who experienced no bias (0 degrees) quickly learned to select targets close to the least-noisy direction. However, groups who experienced a bias often failed to identify the least-noisy direction, even though they did partially adapt to the bias. When noise was introduced after participants experienced and adapted to a 40 degrees bias (without noise) in all directions, they exhibited an improved ability to find the least-noisy direction. We developed two models-one for reach adaptation and one for target selection-that could explain participants' adaptation and target-selection behavior. Our data and simulations indicate that there is a trade-off between adaptation and selection. Specifically, because bias learning is local, participants can improve performance, through adaptation, by always selecting targets that are closest to a chosen direction. However, this comes at the expense of improving performance, through selection, by reaching toward targets in different directions to find the least-noisy direction.
Keyphrases
  • air pollution
  • clinical trial
  • randomized controlled trial
  • emergency department
  • machine learning
  • patient safety
  • deep learning
  • phase ii
  • adverse drug