Login / Signup

Resolution-Associated Lactoferrin Peptides Limit LPS Signaling and Cytokine Secretion from Human Macrophages.

Aviv LutatySoaad SobohSagie Schif-ZuckAmiram Ariel
Published in: International journal of molecular sciences (2020)
The neutrophil granule protein lactoferrin is cleaved and accumulates in efferocytic macrophages as inflammation is resolved. Two peptides present within a resolution-associated 17 kDa fragment of lactoferrin promote the termination of inflammation in vivo by enhancing murine macrophage reprogramming. Here, we report that these two bioactive tripeptides, phenylalanine-lysine-aspartic acid and phenylalanine-lysine-glutamic acid (FKD and FKE, respectively), inhibit ERK and cJun activation following human macrophage exposure to LPS. In addition, these peptides at low concentrations (1-10 μM) modulate human macrophage reprogramming to an anti-inflammatory/pro-resolving phenotype. This was reflected by inhibition of LPS-induced TNF-α and IL-6 secretion and increased IL-10 levels. Moreover, we found naturally occurring FKE analogs (FKECH and FKECHLA) can recapitulate the activity of the short peptide in regulating macrophage cytokine secretion, whereas a reversed EKF peptide was inert in this respect. Curiously, FKD and FKE also regulated cytokine production by bone marrow-derived mouse macrophages, but in a very different fashion than their effect on human macrophages. Thus, lactoferrin peptides limit pro-inflammatory signaling and cytokine production by LPS-activated human macrophages and thereby enhance the resolution of inflammation.
Keyphrases