Login / Signup

Development of an SSR-based genetic map in sesame and identification of quantitative trait loci associated with charcoal rot resistance.

Linhai WangYanxin ZhangXiaodong ZhuXiaofeng ZhuDonghua LiXianmei ZhangYuan GaoGuobin XiaoXin WeiXiurong Zhang
Published in: Scientific reports (2017)
Sesame is prized for its oil. Genetic improvement of sesame can be enhanced through marker-assisted breeding. However, few simple sequence repeat (SSR) markers and SSR-based genetic maps were available in sesame. In this study, 7,357 SSR markers were developed from the sesame genome and transcriptomes, and a genetic map was constructed by generating 424 novel polymorphic markers and using a cross population with 548 recombinant inbred lines (RIL). The genetic map had 13 linkage groups, equalling the number of sesame chromosomes. The linkage groups ranged in size from 113.6 to 179.9 centimorgans (cM), with a mean value of 143.8 cM over a total length of 1869.8 cM. Fourteen quantitative trait loci (QTL) for sesame charcoal rot disease resistance were detected, with contribution rates of 3-14.16% in four field environments; ~60% of the QTL were located within 5 cM at 95% confidence interval. The QTL with the highest phenotype contribution rate (qCRR12.2) and those detected in different environments (qCRR8.2 and qCRR8.3) were used to predict candidate disease response genes. The new SSR-based genetic map and 14 novel QTLs for charcoal rot disease resistance will facilitate the mapping of agronomic traits and marker-assisted selection breeding in sesame.
Keyphrases
  • genome wide
  • dna methylation
  • high density
  • copy number
  • high resolution
  • genetic diversity
  • gene expression
  • fatty acid
  • hepatitis c virus
  • single cell
  • amino acid
  • genome wide association study