Complete genome sequence of Bifidobacterium adolescentis P2P3, a human gut bacterium possessing strong resistant starch-degrading activity.
Dong-Hyun JungWon-Hyong ChungDong-Ho SeoYe-Jin KimYoung-Do NamCheon-Seok ParkPublished in: 3 Biotech (2020)
Resistant starch (RS) is an important food source from which gut bacteria produce short chain fatty acids, which have beneficial effects for human health. The Bifidobacterium adolescentis P2P3, a human gut bacterium possessing a strong RS-degrading activity, was isolated from a healthy Korean adult male. In vitro experiments showed that this bacterium could utilize approximately 63% of high amylose corn starch after forming RS granule clusters. Here we provide the first complete set of genomic information on RS-degrading B. adolescentis P2P3. The genome of B. adolescentis P2P3 consists of one chromosome (2,202,982 bp) with high GC content (59.4%). Analysis of the protein-coding genes revealed that at least nineteen of the starch degradation-related enzymes were present in the genome. Among those, five genes evidently possess carbohydrate-binding domains, which are presumed to be involved in efficient RS decomposition. The complete set of genomic information on B. adolescentis P2P3 could provide an understanding of the role of RS-degrading gut bacteria and its RS degradation mechanism.