Login / Signup

Application of accelerated heteronuclear single quantum coherence experiments to the rapid quantification of monosaccharides and disaccharides in dairy products.

Lea FelsMirko Bunzel
Published in: Magnetic resonance in chemistry : MRC (2022)
Monosaccharides and disaccharides are important dietary components, but if insufficiently metabolized by some population subgroups, they are also linked to disease patterns. Thus, the correct analytical identification, quantification, and labeling of these food components are crucial to inform and potentially protect consumers. Enzymatic assays and high-performance anion-exchange chromatography with pulsed amperometric detection are established methods for the quantification of monosaccharides and disaccharides that, however, require long measuring times (60-180 min). Accelerated methods for the identification and quantification of the nutritionally relevant monosaccharides and disaccharides d-glucose, d-galactose, d-fructose, sucrose, lactose, and maltose were therefore developed. To realize this goal, the NMR experiments HSQC (heteronuclear single quantum coherence) and acceleration by sharing adjacent polarization (ASAP)-HSQC were applied. Measurement times were reduced to 27 and 6 min, respectively, by optimizing the interscan delay and applying non-uniform sampling. The optimized methods were used to quantify d-glucose, d-galactose, d-fructose, sucrose, and lactose in various dairy products. Results of the HSQC and ASAP-HSQC methods are equivalent to the results of the reference methods in terms of both precision and accuracy, demonstrating that these methods can be used to correctly analyze nutritionally relevant monosaccharides and disaccharides in short times.
Keyphrases
  • magnetic resonance
  • mass spectrometry
  • social media
  • healthcare
  • skeletal muscle
  • blood pressure
  • metabolic syndrome
  • ms ms
  • insulin resistance
  • ionic liquid
  • risk assessment
  • reduced graphene oxide
  • real time pcr