Login / Signup

Impact of Dietary Crude Protein Level on Hepatic Lipid Metabolism in Weaned Female Piglets.

Ning LiuYun JiYing YangHai JiaXuemeng SiDa JiangYunchang ZhangZhaolai DaiZhenlong Wu
Published in: Animals : an open access journal from MDPI (2021)
Amino acids serve not only as building blocks for proteins, but also as substrates for the synthesis of low-molecular-weight substances involved in hepatic lipid metabolism. In the present study, eighteen weaned female piglets at 35 days of age were fed a corn- and soybean meal-based diet containing 20%, 17%, or 14% crude protein (CP), respectively. We found that 17% or 20% CP administration reduced the triglyceride and cholesterol concentrations, while enhanced high-density lipoprotein cholesterol (HDL-C) concentration in serum. Western blot analysis showed that piglets in the 20% CP group had higher protein abundance of hormone-sensitive triglyceride lipase (HSL) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), as compared with other groups. Moreover, the mRNA expression of sterol regulatory element binding transcription factor 1 (SREBPF1), fatty acid synthase (FASN), and stearoyl-CoA desaturase (SCD) were lower in the 17% or 20% CP group, compared with those of the piglets administered with 14% CP. Of note, the mRNA level of acetyl-CoA carboxylase alpha (ACACα) was lower in the 17% CP group, compared with other groups. Additionally, the mRNA level of lipoprotein lipase (LPL), peroxisome proliferator-activated receptor alpha α (PPARα), glucose-6-phosphatase catalytic subunit (G6PC), and phosphoenolpyruvate carboxykinase 1 (PKC1) in the liver of piglets in the 20% CP group were higher than those of the 14% CP group. Collectively, our results demonstrated that dietary CP could regulate hepatic lipid metabolism through altering hepatic lipid lipogenesis, lipolysis, oxidation, and gluconeogenesis.
Keyphrases
  • fatty acid
  • transcription factor
  • amino acid
  • binding protein
  • adipose tissue
  • physical activity
  • type diabetes
  • small molecule
  • skeletal muscle
  • drinking water
  • south africa
  • nitric oxide
  • data analysis