Optimization of ictal aborting stimulation using the dynamotype taxonomy.
Matthew P SzuromiViktor K JirsaWilliam C StaceyPublished in: Journal of computational neuroscience (2023)
Electrical stimulation is an increasingly popular method to terminate epileptic seizures, yet it is not always successful. A potential reason for inconsistent efficacy is that stimuli are applied empirically without considering the underlying dynamical properties of a given seizure. We use a computational model of seizure dynamics to show that different bursting classes have disparate responses to aborting stimulation. This model was previously validated in a large set of human seizures and led to a description of the Taxonomy of Seizure Dynamics and the dynamotype, which is the clinical analog of the bursting class. In the model, the stimulation is realized as an applied input, which successfully aborts the burst when it forces the system from a bursting state to a quiescent state. This transition requires bistability, which is not present in all bursters. We examine how topological and geometric differences in the bistable state affect the probability of termination as the burster progresses from onset to offset. We find that the most significant determining factors are the burster class (dynamotype) and whether the burster has a DC (baseline) shift. Bursters with a baseline shift are far more likely to be terminated due to the necessary structure of their state space. Furthermore, we observe that the probability of termination varies throughout the burster's duration, is often dependent on the phase when it was applied, and is highly correlated to dynamotype. Our model provides a method to predict the optimal method of termination for each dynamotype. These results lead to the prediction that optimization of ictal aborting stimulation should account for seizure dynamotype, the presence of a DC shift, and the timing of the stimulation.