Effects of Tolvaptan on Oxidative Stress in ADPKD: A Molecular Biological Approach.
Matteo RigatoGianni CarraroIrene CirellaSilvia DianValentina Di VicoLucia Federica StefanelliVerdiana RavarottoGiovanni BertoldiFederico NalessoLorenzo Arcangelo CalòPublished in: Journal of clinical medicine (2022)
Autosomal dominant polycystic disease (ADPKD) is the most frequent monogenic kidney disease. It causes progressive renal failure, endothelial dysfunction, and hypertension, all of which are strictly linked to oxidative stress (OxSt). Treatment with tolvaptan is known to slow the renal deterioration rate, but not all the molecular mechanisms involved in this effect are well-established. We evaluated the OxSt state in untreated ADPKD patients compared to that in tolvaptan-treated ADPKD patients and healthy subjects. OxSt was assessed in nine patients for each group in terms of mononuclear cell p22 phox protein expression, NADPH oxidase key subunit, MYPT-1 phosphorylation state, marker of Rho kinase activity (Western blot) and heme oxygenase (HO)-1, induced and protective against OxSt (ELISA). p22 phox protein expression was higher in untreated ADPKD patients compared to treated patients and controls: 1.42 ± 0.11 vs. 0.86 ± 0.15 d.u., p = 0.015, vs. 0.53 ± 0.11 d.u., p < 0.001, respectively. The same was observed for phosphorylated MYPT-1: 0.96 ± 0.28 vs. 0.68 ± 0.09 d.u., p = 0.013 and vs. 0.47 ± 0.13 d.u., p < 0.001, respectively, while the HO-1 expression of untreated patients was significantly lower compared to that of treated patients and controls: 5.33 ± 3.34 vs. 2.08 ± 0.79 ng/mL, p = 0.012, vs. 1.97 ± 1.22 ng/mL, p = 0.012, respectively. Tolvaptan-treated ADPKD patients have reduced OxSt levels compared to untreated patients. This effect may contribute to the slowing of renal function loss observed with tolvaptan treatment.
Keyphrases
- end stage renal disease
- newly diagnosed
- oxidative stress
- prognostic factors
- chronic kidney disease
- heart failure
- multiple sclerosis
- stem cells
- dna damage
- cell proliferation
- blood pressure
- poor prognosis
- mesenchymal stem cells
- south africa
- long non coding rna
- patient reported
- binding protein
- polycystic kidney disease
- induced apoptosis
- monoclonal antibody