Login / Signup

Proprioceptive afferents differentially contribute to effortful perception of object heaviness and length.

Madhur MangalamNisarg P DesaiDamian G Kelty-Stephen
Published in: Experimental brain research (2021)
When humans handle a tool, such as a tennis racket or hammer, for the first time, they often wield it to determine its inertial properties. The mechanisms that contribute to perception of inertial properties are not fully understood. The present study's goal was to investigate how proprioceptive afferents contribute to effortful perception of heaviness and length of a manually wielded object in the absence of vision. Blindfolded participants manually wielded specially designed objects with different mass, the static moment, and the moment of inertia at different wrist angles and angular kinematics. These manipulations elicited different tonic and rhythmic activity levels in the muscle spindles of the wrist, allowing us to relate differences in muscle activity to perceptual judgments of heaviness and length. Perception of heaviness and length depended on an object's static moment and the moment of inertia, respectively. Manipulations of wrist angle and angular kinematics affected perceived heaviness and length in distinct ways. Ulnar deviation resulted in an object being perceived heavier but shorter. Compared to static holding, wielding the object resulted in it being perceived heavier but wielding did not affect perceived length. These results suggest that proprioceptive afferents differentially contribute to effortful perception of object heaviness and length. Critically, the role of afferent is specific to the mechanical variable used to derive a given object property. These findings open a new possibility of studies on the link between physiology, and different mechanical variables picked up by the perceptual system.
Keyphrases
  • working memory
  • social support
  • depressive symptoms
  • physical activity
  • mental health
  • skeletal muscle
  • high resolution