Expression of filaments of the Geobacter extracellular cytochrome OmcS in Shewanella oneidensis.
Tong LinWenqi DingDanni ZhangZixuan YouYun YangFeng LiDake XuDerek R LovleyHao SongPublished in: Biotechnology and bioengineering (2024)
The physiological role of Geobacter sulfurreducens extracellular cytochrome filaments is a matter of debate and the development of proposed electronic device applications of cytochrome filaments awaits methods for large-scale cytochrome nanowire production. Functional studies in G. sulfurreducens are stymied by the broad diversity of redox-active proteins on the outer cell surface and the redundancy and plasticity of extracellular electron transport routes. G. sulfurreducens is a poor chassis for producing cytochrome nanowires for electronics because of its slow, low-yield, anaerobic growth. Here we report that filaments of the G. sulfurreducens cytochrome OmcS can be heterologously expressed in Shewanella oneidensis. Multiple lines of evidence demonstrated that a strain of S. oneidensis, expressing the G. sulfurreducens OmcS gene on a plasmid, localized OmcS on the outer cell surface. Atomic force microscopy revealed filaments with the unique morphology of OmcS filaments emanating from cells. Electron transfer to OmcS appeared to require a functional outer-membrane porin-cytochrome conduit. The results suggest that S. oneidensis, which grows rapidly to high culture densities under aerobic conditions, may be suitable for the development of a chassis for producing cytochrome nanowires for electronics applications and may also be a good model microbe for elucidating cytochrome filament function in anaerobic extracellular electron transfer.