(1) Background: Cell proliferation (Ki-67) has important clinical value in the treatment and prognosis of non-small cell lung cancer (NSCLC). However, current detection methods for Ki-67 are invasive and can lead to incorrect results. This study aimed to explore a deep learning classification model for the prediction of Ki-67 and the prognosis of NSCLC based on FDG-PET/CT images. (2) Methods: The FDG-PET/CT scan results of 159 patients with NSCLC confirmed via pathology were analyzed retrospectively, and the prediction models for the Ki-67 expression level based on PET images, CT images and PET/CT combined images were constructed using Densenet201. Based on a Ki-67 high expression score (HES) obtained from the prediction model, the survival rate of patients with NSCLC was analyzed using Kaplan-Meier and univariate Cox regression. (3) Results: The statistical analysis showed that Ki-67 expression was significantly correlated with clinical features of NSCLC, including age, gender, differentiation state and histopathological type. After a comparison of the three models (i.e., the PET model, the CT model, and the FDG-PET/CT combined model), the combined model was found to have the greatest advantage in Ki-67 prediction in terms of AUC (0.891), accuracy (0.822), precision (0.776) and specificity (0.902). Meanwhile, our results indicated that HES was a risk factor for prognosis and could be used for the survival prediction of NSCLC patients. (4) Conclusions: The deep-learning-based FDG-PET/CT radiomics classifier provided a novel non-invasive strategy with which to evaluate the malignancy and prognosis of NSCLC.
Keyphrases
- deep learning
- small cell lung cancer
- convolutional neural network
- pet ct
- advanced non small cell lung cancer
- cell proliferation
- artificial intelligence
- computed tomography
- neoadjuvant chemotherapy
- positron emission tomography
- machine learning
- poor prognosis
- brain metastases
- cell cycle
- ejection fraction
- magnetic resonance imaging
- mental health
- newly diagnosed
- chronic kidney disease
- radiation therapy
- lymph node
- epidermal growth factor receptor
- wastewater treatment
- sensitive detection
- dual energy
- locally advanced
- rectal cancer
- free survival
- patient reported outcomes
- real time pcr