Login / Signup

Oil-Water Interfacial-Directed Spontaneous Self-Assembly of Natural Quillaja Saponin for Controlling Interface Permeability in Colloidal Emulsions.

Xiao-Wei ChenShang-De SunChuan-Guo MaXiao-Quan Yang
Published in: Journal of agricultural and food chemistry (2020)
Assembly of amphiphiles at the interface of two immiscible fluids is of great scientific and technological interest in offering efficient routes to smart vehicles for functional deliveries. Natural Quillaja saponin (QS) has gathered widespread interest within the scientific community as a result of its unique interfacial properties. Herein, spontaneously interface-driven self-assembly (SIDSA) of QS at the oil-water interface was systematically studied by morphology and spectroscopy. It was found to self-assemble into a micrometer-scale network in helical fibers by combined intermolecular π-π stacking and hydrogen bonding among saponins at the liquid-liquid interface. From SIDSA, multilayer films on the surfaces of dispersed droplets were formed and enhanced emulsion stability. Interfacial QS-based films on droplet surfaces were also shown to confine interfacial diffusion processes by serving as transport barriers. Furthermore, they can be exploited to control the release of volatiles from the dispersed liquid phase by regulating the interface film, which is shown by molecular dynamics to occur through a hydrogen-bonded mechanism. These results provide new insight into the interfacial assembly structure that can enable unique controllable release in a broad range of applications in food, beverages, pharmaceuticals, and cosmetics.
Keyphrases