Basal-epithelial subpopulations underlie and predict chemotherapy resistance in triple-negative breast cancer.
Mohammed InayatullahArun MaheshArran K TurnbullJ Michael DixonRachael NatrajanVijay K TiwariPublished in: EMBO molecular medicine (2024)
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.
Keyphrases
- poor prognosis
- genome wide
- copy number
- end stage renal disease
- single cell
- ejection fraction
- newly diagnosed
- locally advanced
- long non coding rna
- transcription factor
- chronic kidney disease
- squamous cell carcinoma
- prognostic factors
- emergency department
- peritoneal dialysis
- genome wide identification
- heat shock
- heat stress
- cancer stem cells
- genome wide analysis
- chemotherapy induced
- combination therapy
- electronic health record
- replacement therapy
- drug discovery