Doxycycline attenuates cisplatin-induced acute kidney injury through pleiotropic effects.
Terumasa NakagawaYutaka KakizoeYasunobu IwataYoshikazu MiyasatoTeruhiko MizumotoMasataka AdachiYuichiro IzumiTakashige KuwabaraNaoki SuenagaYuki NaritaHirofumi JonoHideyuki SaitoKenichiro KitamuraMasashi MukoyamaPublished in: American journal of physiology. Renal physiology (2018)
Cisplatin (CDDP) is a widely-used chemotherapeutic drug for solid tumors, but its nephrotoxicity is a major dose-limiting factor. Doxycycline (Dox) is a tetracycline antibiotic that has been commonly used in a variety of infections. Dox has been shown to possess several other properties, including antitumor, anti-inflammatory, antioxidative, and matrix metalloproteinase (MMP)-inhibiting actions. We, therefore, investigated whether Dox exerts renoprotective effects in CDDP-induced acute kidney injury (AKI). Twelve-week-old male C57BL/6J mice were divided into the following groups: 1) control, 2) Dox (2 mg/ml in drinking water), 3) CDDP (25 mg/kg body weight, intraperitoneally), and 4) CDDP+Dox. After seven days of pretreatment with Dox, CDDP was administered and the animals were killed at day 1 or day 3. We evaluated renal function along with renal histological damage, inflammation, oxidative stress, and apoptosis. MMP and serine protease activities in the kidney tissues were assessed using zymography. Administration of CDDP exhibited renal dysfunction and caused histological damage predominantly in the proximal tubules. Dox did not affect either expression of CDDP transporters or the accumulation of CDDP in renal tissues; however, it significantly ameliorated renal dysfunction and histological changes together with reduced detrimental responses, such as oxidative stress and inflammation in the kidneys. Furthermore, Dox inhibited the activity of MMP-2 and MMP-9, as well as serine proteases in the kidney tissues. Finally, Dox markedly mitigated apoptosis in renal tubules. Thus, Dox ameliorated CDDP-induced AKI through its pleiotropic effects. Our results suggest that Dox may become a novel strategy for the prevention of CDDP-induced AKI in humans.
Keyphrases
- oxidative stress
- acute kidney injury
- diabetic rats
- drinking water
- ischemia reperfusion injury
- anti inflammatory
- gene expression
- dna damage
- cardiac surgery
- induced apoptosis
- randomized controlled trial
- drug induced
- cell migration
- type diabetes
- cell death
- emergency department
- clinical trial
- high resolution
- protein kinase
- endoplasmic reticulum stress
- signaling pathway
- risk assessment
- african american
- pi k akt
- visible light