Oligomeric Zinc Thiolates Tethering Multidentate Carboxylates for Nondestructive Aqueous Phase Transfer of Quantum Dots.
Jisu HanYeongho ChoiHyeonjun LeeDoh C LeeJaehoon LimPublished in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Functionalization of quantum dots (QDs) via ligand exchange is prone to debase their photoluminescence quantum yield (PL QY) owing to the unavoidable surface damage by excess reactants, and even worse in aqueous medium. Herein, the oligomeric zinc thiolate as the multidentate hydrophilic ligand featuring facile synthetic protocol is proposed. A simple reaction between ZnCl 2 and 3-mercaptopropionic acid produces oligomeric ligands containing 3-6 zinc thiolate units, where the terminal moieties provide multidentate anchoring to the surface as well as hydrophilicity. 2D proton nuclear Overhauser effect spectroscopy (2D 1 H NOESY) and X-ray photoelectron spectroscopy (XPS) reveal that the oligomeric zinc thiolate ligands adsorb on the surface via multidentate metal carboxylate bindings without destruction of molecular structure, regardless of partial dissociation of thiolate branches in aqueous phase. Enhanced binding affinity granted by the multidentate nature allows for the effective exchange of original surface ligands without considerable surface deterioration. The zinc thiolate-capped Cd-free aqueous QDs exhibit a high photoluminescence quantum yield of ≈90% and extended stability against long-term storage and photochemical stress.