Login / Signup

Amphipathic Peptide-Phospholipid Nanofibers: Phospholipid Specificity and Dependence on Concentration and Temperature.

Keisuke IkedaAyame HoriuchiMisa YoshinoChinatsu ShimizuHiroyuki NakaoMinoru Nakano
Published in: Langmuir : the ACS journal of surfaces and colloids (2021)
The design of nanoassemblies is an important part of the development of new materials for applications in nanomedicine and biosensors. In our previous study, cysteine substitution of the apolipoprotein A-I-derived peptide 18A at residue 11, 18A[A11C], bound to 1-palmitoyl-2-oleoylphosphatidylcholine to form fibrous aggregates at a lipid-to-peptide molar ratio of ≤2 and a fiber diameter of 10-20 nm. However, the mechanisms underlying the lipid-peptide interactions that enable nanofiber formation remain unclear. Here, we evaluated the phospholipid specificity, concentration dependence, and temperature dependence of the formation of 18A[A11C]-lipid nanofibers. Nanofibers were found to form in the presence of specific phospholipids and have a constant lipid/peptide stoichiometry of 1.2 ± 0.2. Moreover, an increase in the length of the acyl chain in phosphatidylcholines was found to increase the structural stability of the nanofibers. These results indicate that specific molecular interactions between peptides and both the headgroups and acyl chains of phospholipids are involved in nanofiber formation. Furthermore, the formation and disassembly of the nanofibers were reversibly controlled by changes in temperature and concentration. The results of the present study provide an insight into the creation of nanoassembling structures.
Keyphrases
  • fatty acid
  • high resolution
  • photodynamic therapy
  • amino acid
  • optical coherence tomography