Login / Signup

The involvement of TGF-β1 /FAK/α-SMA pathway in the antifibrotic impact of rice bran oil on thioacetamide-induced liver fibrosis in rats.

Rehab F Abdel-RahmanHany M FayedGihan F AsaadHanan A OgalyAlyaa F HessinAbeer A A SalamaSahar S M AbdelrahmanMahmoud S ArbidMarawan Abd Elbaset Mohamed
Published in: PloS one (2021)
The objective of the current study is to investigate the effect of rice bran oil (RBO) on hepatic fibrosis as a characteristic response to persistent liver injuries. Rats were randomly allocated into five groups: the negative control group, thioacetamide (TAA) group (thioacetamide 100 mg/kg thrice weekly for two successive weeks, ip), RBO 0.2 and 0.4 groups (RBO 0.2mL and 0.4 mL/rat/day, po) and standard group (silymarin 100 mg/kg/day, po) for two weeks after TAA injection. Blood and liver tissue samples were collected for biochemical, molecular, and histological analyses. Liver functions, oxidative stress, inflammation, liver fibrosis markers were assessed. The obtained results showed that RBO reduced TAA-induced liver fibrosis and suppressed the extracellular matrix formation. Compared to the positive control group, RBO dramatically reduced total bilirubin, AST, and ALT blood levels. Furthermore, RBO reduced MDA and increased GSH contents in the liver. Simultaneously RBO downregulated the NF-κβ signaling pathway, which in turn inhibited the expression of some inflammatory mediators, including Cox-2, IL-1β, and TNF-α. RBO attenuated liver fibrosis by suppressing the biological effects of TGF-β1, α-SMA, collagen I, hydroxyproline, CTGF, and focal adhesion kinase (FAK). RBO reduced liver fibrosis by inhibiting hepatic stellate cell activation and modulating the interplay among the TGF-β1 and FAK signal transduction. The greater dosage of 0.4 mL/kg has a more substantial impact. Hence, this investigation presents RBO as a promising antifibrotic agent in the TAA model through inhibition of TGF-β1 /FAK/α-SMA.
Keyphrases