Login / Signup

Differential histological features and myogenic protein levels in distinct muscles of d-sarcoglycan null muscular dystrophy mouse model.

Carlos Palma-FloresLuis Javier Cano-MartínezFrancisca Fernández-ValverdeItzel Torres-PérezSergio de Los SantosJ Manuel Hernández-HernándezAdriana Fabiola Hernández-HerreraSilvia GarciaPatricia CantoAlejandro Zentella-DehesaRamón Mauricio Coral-Vázquez
Published in: Journal of molecular histology (2023)
Skeletal muscle (SkM) comprises slow and fast-twitch fibers, which differ in molecular composition, function, and systemic energy consumption. In addition, muscular dystrophies (DM), a group of diverse hereditary diseases, present different patterns of muscle involvement, progression, and severity, suggesting that the regeneration-degeneration process may differ depending on the muscle type. Therefore, the study aimed to explore the expression of proteins involved in the repair process in different muscles at an early stage of muscular dystrophy in the δ-sarcoglycan null mice (Sgcd-null), a limb-girdle muscular dystrophy 2 F model. Hematoxylin & Eosin (H&E) Staining showed a high number of central nuclei in soleus (Sol), tibialis (Ta), gastrocnemius (Gas), and extensor digitorum longus (Edl) from four months Sgcd-null mice. However, fibrosis, determined by trichrome of Gomori modified staining, was only observed in Sgcd-null Sol. In addition, the number of Type I and II fibers variated differentially in the Sgcd-null muscles vs. wild-type muscles. Besides, the protein expression level of β-catenin, myomaker, MyoD, and myogenin also presented different expression levels in all the Sgcd-null muscles studied. In summary, our study reveals that muscles with different metabolic characteristics showed distinct expression patterns of proteins involved in the muscle regeneration process. These results could be relevant in designing therapies for genetic and acquired myopathy.
Keyphrases