Accelerated Green Process of 2,5-Dimethylpyrazine Production from Glucose by Genetically Modified Escherichia coli.
Jian-Zhong XuHaibo YuXiulai ChenLiming LiuWeiguo ZhangPublished in: ACS synthetic biology (2020)
2,5-Dimethylpyrazine (2,5-DMP) is an indispensable additive for flavoring in the food industry and an important substrate for producing hypoglycemic and antilipolytic drugs. However, 2,5-DMP is produced by chemical synthesis in industry. Herein, a "green" strategy to produce 2,5-DMP has been reported for the first time. To do this, we rewrote the de novo 2,5-DMP biosynthesis pathway and substrate transmembrane transport in an l-threonine high-yielding strain to promote highly efficient 2,5-DMP production from glucose by submerged fermentation. The final strain T6-47-7 could produce 1.43 ± 0.07 g/L of 2,5-DMP with a carbon yield of 6.78% and productivity of 0.715 g/(L·d) in shake-flask fermentation using a phase-wise manner of hypoxia-inducible expression. The design-based strategy for constructing the 2,5-DMP high-yielding strain reported here could serve as a general concept for breeding high-yielding strains that produce some other type of alkylpyrazine.