Login / Signup

Chemical-Mediated Targeted Protein Degradation in Neurodegenerative Diseases.

Soon-Sil HyunDongyun Shin
Published in: Life (Basel, Switzerland) (2021)
Neurodegenerative diseases, including Alzheimer's disease, Huntington's disease, and Parkinson's disease, are a class of diseases that lead to dysfunction of cognition and mobility. Aggregates of misfolded proteins such as β-amyloid, tau, α-synuclein, and polyglutamates are known to be among the main causes of neurodegenerative diseases; however, they are considered to be some of the most challenging drug targets because they cannot be modulated by conventional small-molecule agents. Recently, the degradation of target proteins by small molecules has emerged as a new therapeutic modality and has garnered the interest of the researchers in the pharmaceutical industry. Bifunctional molecules that recruit target proteins to a cellular protein degradation machinery, such as the ubiquitin-proteasome system and autophagy-lysosome pathway, have been designed. The representative targeted protein degradation technologies include molecular glues, proteolysis-targeting chimeras, hydrophobic tagging, autophagy-targeting chimeras, and autophagosome-tethering compounds. Although these modalities have been shown to degrade many disease-related proteins, such technologies are expected to be potentially important for neurogenerative diseases caused by protein aggregation. Herein, we review the recent progress in chemical-mediated targeted protein degradation toward the discovery of drugs for neurogenerative diseases.
Keyphrases
  • small molecule
  • protein protein
  • cancer therapy
  • oxidative stress
  • binding protein
  • cell death
  • endoplasmic reticulum stress
  • emergency department
  • cross sectional
  • ionic liquid
  • white matter
  • mild cognitive impairment