Login / Signup

Hyposmia may predict development of freezing of gait in Parkinson's disease.

Jae Jung LeeJin Yong HongJong Sam Baik
Published in: Journal of neural transmission (Vienna, Austria : 1996) (2021)
To explore the effect of olfactory dysfunction on treatment of motor manifestations in Parkinson's disease (PD). The current longitudinal retrospective cohort study consecutively recruited 108 de novo PD patients. Of whom 29 were normosmia and 79 were hyposmia, respectively, which was determined by the Korean Version of Sniffin' Sticks Test II at the time of diagnosis. All the participants underwent serial clinical examinations including Unified Parkinson's Disease Rating Scale (UPDRS), Mini-Mental State Examination, and Montreal Cognitive Assessment. The normosmic group demonstrated a significantly greater reduction of the UPDRS III score (30.3 ± 5.9 to 21.9 ± 5.1) than that of the hyposmic group (34.5 ± 9.3 to 28.5 ± 8.1) from baseline to 1-year later (p, 0.003; Bonferroni correction for p < 0.0045). Of subdomains in UPDRS III, the axial domain revealed a remarkable decrease in the normosmic group. Further, the hyposmic group exhibited a higher development rate of freezing of gait (FOG) compared to the normosmic group (29/79 (36.7%) vs 2/29 (6.9%); p, 0.002) during 33.9 ± 7.7 months of the mean follow-up period. A Cox proportional hazards model demonstrated the hyposmia to be a significant risk factor for the future development of FOG (HR, 4.23; 95% CI 1.180-17.801; p, 0.05). Our data demonstrated the olfactory dysfunction to be a significant risk factor for the development of the FOG in PD. Hyposmic PD patients should be paid more careful attention to the occurrence of FOG in the clinical practice.
Keyphrases