Diversification and deleterious role of microbiome in gastric cancer.
Indranil ChattopadhyayRohit GundamarajuAshwin RajeevPublished in: Cancer reports (Hoboken, N.J.) (2023)
Gut microbiota dictates the fate of several diseases, including cancer. Most gastric cancers (GC) belong to gastric adenocarcinomas (GAC). Helicobacter pylori colonizes the gastric epithelium and is the causative agent of 75% of all stomach malignancies globally. This bacterium has several virulence factors, including cytotoxin-associated gene A (CagA), vacuolating cytotoxin (VacA), and outer membrane proteins (OMPs), all of which have been linked to the development of gastric cancer. In addition, bacteria such as Escherichia coli, Streptococcus, Clostridium, Haemophilus, Veillonella, Staphylococcus, and Lactobacillus play an important role in the development of gastric cancer. Besides, lactic acid bacteria (LAB) such as Bifidobacterium, Lactobacillus, Lactococcus, and Streptococcus were found in greater abundance in GAC patients. To identify potential diagnostic and therapeutic interventions for GC, it is essential to understand the mechanistic role of H. pylori and other bacteria that contribute to gastric carcinogenesis. Furthermore, understanding bacteria-host interactions and bacteria-induced inflammatory pathways in the host is critical for developing treatment targets for gastric cancer.
Keyphrases
- helicobacter pylori
- biofilm formation
- escherichia coli
- lactic acid
- helicobacter pylori infection
- staphylococcus aureus
- end stage renal disease
- pseudomonas aeruginosa
- candida albicans
- ejection fraction
- chronic kidney disease
- squamous cell carcinoma
- peritoneal dialysis
- cystic fibrosis
- physical activity
- prognostic factors
- high glucose
- genome wide
- risk assessment
- young adults
- dna methylation
- klebsiella pneumoniae
- climate change
- mass spectrometry
- childhood cancer
- drug induced
- smoking cessation